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Abstract

Industrial maintenance as a service provided by the plant manufacturer is
receiving increasing attention throughout the community of plant operators,
notably in the cement and mining industry. The main reason is the fact that
manufacturers have the deepest knowledge of their own plants. Furthermore,
plant operators do not want to worry about maintenance issues and are rather
willing to outsource this task to a service provider. The question then is, at what
price the operator and the manufacturer are willing to close a service contract.
The service provider must make sure that the price covers his expected cost
including an eventual insurance fee against extreme damage and that the risk
of outliers can be managed. The operator, in turn, must make sure that the
price is covered by his income leaving an appropriate profit. Furthermore, the
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maintenance service provider can ask an insurance company for protection
against very large damages. And finally, the investor, granting a loan to the
operator, is interested in his own risk.

Keywords: Reliability Engineering, Engineering Applications of Graph
Theory, Monte Carlo Simulation, Matrix Inversion.

1 The Model

In a favourable market situation, where every unit of production of the
commodity under consideration can be sold, operators of large industrial
plants, such as in the cement or the mining industry, crucially depend on
high availability characteristics of their systems. Every unplanned system
malfunction reduces revenue. The current paper describes an approach to
estimate the output distribution of a multicommodity plant based on parallel,
alternating renewal processes, representing component defects and subsequent
repairs. Estimation makes use of the Monte-Carlo Simulation technique. For
each time interval in each of a set of simulations, the plant must be modeled
by an appropriate technique.

Reliability engineering, in the past, has largely concentrated on systems
with stochastically independent binary components, see [4], for instance.
Systems with a continuum of states call for a different approach. Kuei-Lin [1]
deals with the reliability of manufacturing networks. So does this paper by
modeling the manufacturing network as a graph with nodes, which linearly
transform real-valued input vectors into real-valued output vectors. The
transformation or yield matrix implements this transformation and is subject to
failure and repair. This way, computing the output vector calls for an efficient
matrix inversion algorithm, as this operation must be performed for each
time interval and each simulation. Such algorithms are vital to the purpose
of this paper, as also discussed in [2], for instance or [6]. Juan-Li [3] studies
stochastic network problems, when malfunctions arise from physical failures
and emphasizes insurance and reinsurance aspects. Stochastic networks can
also be viewed from an entirely different angle. Thus, continuous and constant
in-flow into the system may be replaced by discrete arrivals of customers to
be routed through the individual stations in the graph and to join queues in
front of the stations. This type of problem is investigated, for example by [5].

The maintenance task in plant operation is increasingly being outsourced
to professional maintenance service providers, such as the plant manufacturer
himself. The reason is the deep knowledge, the plant manufacturer has on his
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own systems. Providing maintenance, however, against a fixed fee, usually
calls for protection against rare, but very large damages. The idea presented
here is to find insurance coverage beyond a certain deductible. Finally, the
investor who grants a loan to the operator in order to build the plant, has a
vital interest in the probability that the operator will fail to pay back his loan.
Computing the insurance premium and every kind of risk incurring to the
operator, the manufacturer and the investor, requires knowledge of the output
distribution.

This paper is organized as follows: In the current chapter we outline the
model and deal with the master equations relating output to input in a network
of nodes. We illustrate this with an example and describe how the stochastic
processes consisting of failure and repair act on the yield matrices. Next we
look at output and loss and define both in terms of the stochastic properties
of the yield matrix. In Chapter 2 the necessity to invert certain matrices is
the main topic. Various ways to accelerate or avoid matrix inversion are
investigated. For instance, if the graph of the system under consideration
contains no cycles, the precomputation of certain graph related coefficients
will be possible. Also, if the yield matrix has a certain modular structure,
matrix inversion collapses into a series of smaller inversions. This, together
with a special disturbance model avoids repeated matrix inversion altogether
by making use of the eigenvalues and the eigenvectors of the undisturbed
matrix. It is shown how Monte-Carlo simulation, in connection with matrix
inversion, can be used to estimate the output distribution and the damage
distribution. Chapter 3 uses these distributions to calculate certain risks on
the various players in the maintenance cycle. Chapter 4, finally illustrates the
computational process by means of a small example.

1.1 Definitions and Assumptions

Assume the plant under consideration can be modeled as a graph with n nodes
and an appropriate number of edges. Assume node i ∈ {1, . . . , n} has M(i)
inputs and K(i) outputs. Let

xi = (xi
1, . . . , x

i
M(i))

T

yi = (yi
1, . . . , y

i
K(i))

T

be the vector of input and output flows of node i, respectively and let Ai be a
matrix mapping IRM onto IRK such that

yi = Ai ∗ xi
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Below we will refer to the individal inputs and outputs of a node also as
the input and output ports. Concatenating vectors xi und yi into one single
vector x and y each and defining a matrix

A = Ψ(A1, . . . , An)

whereby Ψ is a matrix valued function of the matrix valued arguments
A1, . . . , An one can write

y = A ∗ x (1)

We will callA the yield matrix in this paper. The inputs to each of the nodes
are composed of certain outputs of predecessor nodes and eventual external
inputs, whereby cycles may occur. x, therefore can be written as

x = B ∗ y + α (2)

for some appropriate connection matrixB and a vector α, representing the net
inflow to the system. Equation (2) makes sure that inputs to the source nodes
can be represented by certain outputs of other nodes and components of the
vector α.

It is assumed, without loss of generality, that a unit of production costs a
unit price of 1$.

1.2 The Main Equation

Plugging Equation (2) into Equation (1) yields

y = AB ∗ y +Aα or, equivalenly

y = (I −AB)−1Aα (3)

provided matrix I − AB is nonsingular, which will henceforth be assumed
and can be tested as needed.

1.3 Example

Figure 1 shows the flow of material in a plant having all the graph related
properties as described above. Defining the vectors

x =

⎛
⎝ 0
x1

1
x2

1

⎞
⎠ y =

⎛
⎝y1

1
y2
1
y2
2

⎞
⎠α =

⎛
⎝α1

0
0

⎞
⎠
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Figure 1 Example layout.

then, with the matrices

A1 =
(
a1

1,1, a
2
1,2

)
, A2 =

(
a2

1,1
a2

2,1

)

A =

⎛
⎝a1

1,1, a
2
1,2, 0

0, 0, a2
1,1

0, 0, a2
2,1

⎞
⎠, B =

⎛
⎝0, 0, 0

0, 0, 1
1, 0, 0

⎞
⎠

we see that Equation (3) is satisfied.

1.4 The Random Process

Let us now follow the system over a time period [0, T ] ⊆ R. Throughout
this time period we will see a sequence of events. The k-th event tk ∈ [0, T ]
occurs in node i ∈ {1, . . . , n}, say. If the event is a failure, then the affected
node will experience a modified yield matrix Ai

tk
, which differs by a small

matrix Δi
tk

from Ai such that Ai
tk

= Ai + Δi
tk

. The up times of each node
are supposed to be – without loss of generality – exponentially distributed
with an event rate κi. The repair times are supposed – again without loss of
generality – to be deterministic with a constant repair time τi. Starting with an
entirely intact system, the first event must necessarily be a failure of a node.
Each subsequent event produces a new matrix Atk whereby submatrix Ai

tk
is

equal to submatrixAi, if the event at time tk was a repair and differs fromAi,
if the event was a failure. Each event is represented by

• the time
• the node affected
• and the mode (Up/Down)

and creates its own successor until time T has been exhausted.
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1.5 Output and Loss Distributions

The vectorial output y in the system under consideration becomes time
dependent through the randomly changing yield matricesAt of the nodes, i.e.

yt = (I −AtB)−1Atα (4)

The entire output over the whole period can be expressed as a sum of
output rates over the list of events multiplied by the time expired since the last
event, i.e.

Y :=
∑

k∈{1,2,3,...},tk∈[0,T ]

ytk−1 ∗ (tk − tk−1) (5)

Below we single out one particular component of y – henceforth called
ys denoting a sink – and we are interested in its distribution and its density

F (η) = P{ys ≤ η}
f(η) =

dF (η)
dη

(6)

Let ys
max be the maximum achievable output of the plant, when the system

is intact, i.e. when

A = A0

ys
max : = ((I −A0B)−1A0α)s (7)

with the symbol s on the right hand side again denoting the sink and define
the defect as the missing yield

Z := Y s
max − ys

As a consequence the distribution function of Z is given by

G(ζ) := P{Z ≤ ζ} = P{Y s ≥ ys
max − ζ}

= 1 − P{Y s ≤ ys
max − ζ} = 1 − F (ys

max − ζ) (8)

assuming F is continuous. The distribution density of the defect is given by

g(ζ) :=
dP{Z ≤ ζ}

dζ
= f(ys

max − ζ) (9)

The main objective in this paper is the numerical estimation of G(z) and
g(z) via a Monte-Carlo simulation of F (η) and f(η).
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2 The Numerical Challenge

The purpose of this paper is to use Equations (4) and (5) in a loop over
many simulations and time steps within each simulation to generate possible
lifetime trajectories. Below we will simulate the global output y over the time
period [0, T ].

In the pursuit of finding the damage distribution we are seeking ways to
accelerate the algorithm which consists in many consecutive matrix inver-
sions. We process the sequence of events in the following manner: In the
beginning ys is given by Equation (7). As time proceeds yt is given by
Equation (4).

2.1 A Matrix Series Expansion

Setting
At = At−1 + Δt (10)

for a certain matrix Δt, one obtains from (4) through a series expansion of the
matrix (I −At−1B)−1ΔtB the following expression:

yt = (I − (At−1 + Δt)B)−1Atα

= (I −At−1B − ΔtB)−1Atα

= ((I −At−1B)(I − (I −At−1B)−1ΔtB))−1Atα

= (I − (I −At−1B)−1ΔtB)−1(I −At−1B)−1Atα

= (I + (I −At−1B)−1ΔtB)(I −At−1B)−1Atα

+ o(‖(I −At−1B)−1ΔtB‖) (11)

assuming the norm of (I−At−1B)−1ΔtB is small. This creates hope that – by
tolerating a small error of order o(‖(I −At−1B)−1ΔtB‖) – one could do the
matrix inversion only in every other step and thereby save on computational
work.

2.2 An Iterative Approximation

Another method to save on the effort of inversion arises by considering

yt+1 = (I −At+1B)−1At+1α

(I −At+1B)yt+1 = At+1α

(I − (At + Δt+1)B)yt+1 = At+1α

(I −AtB)yt+1 = At+1α+ Δt+1Byt+1

yt+1 ≈ (I −AtB)−1[At+1α+ Δt+1Byt] (12)
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2.3 An Iterative Solutions

Equation (12) suggests to look for an iterative solution for yt+1 in the following
form:

yk+1
t+1 = (I −AtB)−1[At+1α+ Δt+1By

k
t+1], k = 0, 1, 2, 3...

y0
t+1 = yt (13)

The question now is, whether iteration (13) converges. Applying (13) for
indices k and k + 1 therefore yields

yk+1
t+1 − yk

t+1 = (I −AtB)−1Δt+1B(yk
t+1 − yk−1

t+1 ), k = 1, 2, 3 . . . (14)

If the operator Ut := (I − AtB)−1Δt+1B represents a contracting map,
then iteration (13) converges.

Lemma 1 Let the matrix Ut have n different eigenvalues χ1, . . . , χn. If

0 ≤ χi < 1, i ∈ 1, . . . , n,
R := max

1,...,n
χi < 1 (15)

then (13) is a contracting map.

Proof. With

Δyk+1
t+1 := yk+1

t+1 − yk
t+1, k = 1, 2, 3, . . .

Then, from (14) one obtains Δyk+1
t+1 := Ut ∗ Δyk

t . Now express Δyk
t in

terms of the eigenvectors vi, i ∈ {1, . . . , n} of Ut, i.e. Δyk
t :=

∑
i∈1,...,n

wi ∗ vi for some coefficients wi, i ∈ {1, . . . , n}. Then the following holds

‖Δyk+1
t ‖ ≤ max

i∈{1,...,n}
χi ∗ ‖

∑
i∈{1,...,n}

wi ∗ vi‖

= max
i∈{1,...,n}

χi ∗ ‖Δyk
t ‖ ≤ R‖Δyk

t ‖

‖Δyk+1
t ‖ ≤ Rk ∗ ‖Δy1

t ‖
and therefore limk−>∞ ‖Δyk

t ‖ = 0 which proves the claim.

Equivalently, starting from Equation (3) one can set

yk+1
t = AtB ∗ yk

t +Atα, k ∈ 0, 1, 2, 3...
y0

t = Atα (16)
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Lemma 2 It is straightforward to show that

yk
t =

k∑
ν=0

(AtB)ν ∗Atα (17)

Also, if
‖AtB‖ < 1 (18)

then iteration (16) converges.

Proof. The proof of (17) follows by induction. (17) certainly holds for k = 0
using (16). Now, assume it holds for any k > 0. Then

yk+1
t = AtB ∗

k∑
ν=0

(AtB)ν ∗Atα+Atα

=
k+1∑
ν=1

(AtB)ν ∗Atα+Atα

=
k+1∑
ν=1

(AtB)ν ∗Atα+ (AtB)0 ∗At ∗ α

=
k+1∑
ν=0

(AtB)ν ∗Atα (19)

and the lemma is proven.

2.4 A Special Case

Lemma 3 If
κi = 0 ∨ τi = 0, i ∈ {1, . . . , n}

then
P{Yt = Ymax} = 1, t ∈ {0, 1, 2, .., T}

Proof. Straightforward.

Dropping the time index in the matrix elements and the input and output
vectors for now one can show, that the following holds:

Lemma 4 Let, for each node i ∈ {1, . . . , n} and for each input port
k ∈ {1, . . . ,M(i)} V (i, k) and P (i, k) denote the predecessor attached to
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input port k of node i and the corresponding output port on node V (i, k),
respectively. Also, let Ai

tk
= ξi

tk
∗ Ai for some random variable ξi

tk
, 0 ≤

ξi
tk

≤ 1. Finally set V (i, k1, k2) := V (V (i, k1), k2) and P (i, k1, k2) :=
P (V (i, k1), k2) and so forth. If the network contains no cycles, then each
output of each node can be written as

yi
l =

M(i)∑
k1=1

M(V (i,k1))∑
k2=1

. . .

M(V (i,k1,...,kN−1))∑
kN=1

ai
l,k1

N∏
s=2

a
V (i,k1,...,ks−1)
P (i,k1,...,ks−1),ks

x
V (i,k1,...,kN )
kN

(20)

Proof. By definition the following holds

yi
l =

M(i)∑
k=1

ai
l,kx

i
k (21)

Observing that

xi
k =

{
y

V (i,k)
P (i,k) , if M(V (i, k)) > 0
αL(i,k), else - for some function L(i, k)

}

and plugging this result into Equation (21), one obtains

yi
l =

M(i)∑
k=1

ai
l,ky

V (i,k)
P (i,k) (22)

as long as M(V (i, k)) > 0. Continuing this process once shows

yi
l =

M(i)∑
k=1

M(V (i,k))∑
r=1

ai
l,ka

V (i,k)
P (i,k),ry

V (V (i,k),r)
P (V (i,k),r) (23)

The process stops, when M(V (i, k1, . . . , kN )) = 0, in which

case x
V (i,k1,...,kN )
N = α(L(i, k1, . . . , kN )) for some appropriate function

α(L(i, k1, . . . , kN )).

Corollary 1 Formula (20) has an important consequence. By letting i repre-
sent a sink node, i.e. a node which has no successors and by continuing the
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recursion on the right hand side until V (i, k1, . . . , ks), P (i, k1, . . . , ks) point
to an external input α(L(i, k1, . . . , kN )), yl

i can be represented as a linear
function of the inputs, whereby the coefficients are composed of a product of
matrix elements.

yi
l =

∑
k∈NN

ψ(l, i, k)α(L(l, i, k))
∏

ρ∈{1,...,n},ρ defective

ξρ
t (24)

where the summation index satisfies

1 ≤ kν ≤ M(V (i, k1, . . . , kν−1)), 1 ≤ ν ≤ N,

M(V (i, k1, . . . , kν)) = 0 (25)

and

ψ(l, i, k) = ai
l,k1

N∏
s=2

a
V (i,k1,...,ks−1)
P (i,k1,...,ks−1),ks

Proof. Starting from Equation (20) one verifies that, upon using
ks−1 := (k1, . . . , ks−1)

yi
l,t =

∑
k∈NN

ai
l,k1,t

N∏
s=2

aP (i,ks−1),ks,tα(L(l, i, k))

with the above mentioned condition on the summation index. Now, upon
observing that ai

r,k,t = ξi
ta

i
r,k, 1 ≤ k ≤ M(i), 1 ≤ k ≤ K(i), one proves the

corollary.

Formula (24) allows for a precomputation of all the factorsψi
k and thereby

avoids the necessity to invert the yield matrix for each epoch throughout the
simulation. Instead, only the scalars ξl

t must be simulated.

2.5 Network Modularization

Dropping the time index for the purpose of the follwing result, one can show

Lemma 5 If the graph representing the system can be partitioned into a set
of L subgraphs such that subgraph i ∈ {1, . . . , L}

• receives a net external inflow represented by α(i) from subgraphs with
lower indices

• has its own yield matrix A(i)

• has a set of connection matrices B(i,j)
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• has an output vector given by y(i)

and there are no cycles between subgraphs, while each subgraph may possess
internal cyles, then the following holds:

y(1) = (I −A(1)B(1,1))−1A(1)α(i)

y(2) = (I −A(2)B(2,2))−1A(2)

⎛
⎝ 1∑

j=1

B(2,j)y(j) + α(2)

⎞
⎠

. . .

y(L) = (I −A(L)B(L,L))−1A(L)

⎛
⎝L−1∑

j=1

B(L,j)y(j) + α(L)

⎞
⎠ (26)

Proof. With the above definitions the following equations hold:

y(i) = A(i)x(i)

x(i) =
i−1∑
j=1

B(i,j)y(j) +B(i,i)y(i) + α(i) (27)

Therefore, plugging the second equation into the first one yields

y(i) =
i−1∑
j=1

A(i)B(i,j)y(j) +A(i)B(i,i)y(i) +A(i)α(i) (28)

Concatenating the output vectors y(i), i ∈ {1, . . . , L} into one large output
vector y one obtains

y =

⎛
⎜⎜⎜⎝
A(1)B(1,1), .......................................................

A(2)B(2,1), A(2)B(2,2), ....................................
. . .

A(L)B(L,1), A(L)B(L,2), . . . , A(L)B(L,L)

⎞
⎟⎟⎟⎠ y+

⎛
⎜⎜⎜⎝
A(1)α(1)

A(2)α(2)

. . .
A(L)α(L)

⎞
⎟⎟⎟⎠

(29)
This can also be written as

y =

⎛
⎜⎜⎜⎝
A(1)B(1,1), ..............................

.............., A(2)B(2,2), ...............
. . .

............................., A(L)B(L,L)

⎞
⎟⎟⎟⎠ y
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+

⎛
⎜⎜⎜⎝

A(1)α(1)

A(2) ∑2−1
j=1 B

(2,j)y(j) +A(2)α(2)

. . .

A(L) ∑L−1
j=1 B

(L,j)y(j) +A(L)α(L)

⎞
⎟⎟⎟⎠ (30)

Equation (30) is equivalent to Equation (26), which proves the lemma.

This result may eventually be used to simplify matters and accelerate
the simulations, as smaller matrices must be inverted in comparison to
Equation (3). Also, it can be extended to more complex graphs with isolated
subgraphs.

In order to save matrix inversion effort we can observe another interesting
special case upon reinsertion of the time index t:

Corollary 2 If the conditions of lemma (5) hold for each subgraph, and
in addition matrices A(i) for all i ∈ {1, . . . ,M(i)} have only different
eigenvalues and the following definitions are used

α̃
(i)
t :=

i−1∑
j=1

B(i,j)y
(i)
t + α(i)

A
(i)
t B(i,i)v

(i)
t = λ

(i)
k v

(i)
k

A
(i)
t α̃

(i)
t =

n∑
k=1

ri
k,tv

(i)
k (31)

where λ(i)
k and v(i)

k , k ∈ {1, . . . ,M(i)} are the eigenvalues and the eigenvec-

tors of A(i)B(i,i) and r(i)k,t, v
(i)
k is the representation of A(i)α̃

(i)
t in the basis

spanned by the eigenvectors, then y(i)
t can be expressed as

y
(i)
t = ξ

(i)
t

n∑
k=1

r
(i)
k,t

v
(i)
k

1 − ξ
(i)
t λ

(i)
k

(32)

Proof. The following can be concluded from (26)

y
(i)
t = (I −A

(i)
t B(i,i))−1A

(i)
t α̃

(i)
t

= ξ
(i)
t (I − ξ

(i)
t A(i)B(i,i))−1A(i)α̃

(i)
t

=
n∑

k=1

r
(i)
k,tξ

(i)
t (I − ξ

(i)
t A(i)B(i,i))−1v

(i)
k (33)
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using A(i)
t = ξ

(i)
t A(i). With the definitions of λ(i)

k , v
(i)
k , k ∈ {1, . . . , n} one

obtains

(I − ξ
(i)
t A(i)B(i,i))v(i)

k = (1 − ξ
(i)
t λ

(i)
k )v(i)

k , k ∈ {1, . . . , n}
(I − ξ

(i)
t A(i)B(i,i))−1v

(i)
k =

1

1 − ξ
(i)
t λ

(i)
k

v
(i)
k , k ∈ {1, . . . , n} (34)

Inserting (34) into (33) one obtains

y
(i)
t = ξ

(i)
t

n∑
k=1

r
(i)
k,tv

(i)
k

1 − ξ
(i)
t λ

(i)
k

(35)

which proves the corollary.

2.6 Monte Carlo Simulation

In the sequel we will discuss several details of simulating the output ys in
order to generate the distribution P{ys ≤ η}. Assume we are performing a
number NSIM of simulations. According to (6) the probability P{ys ≤ η}
can be approximated by

F̂ (η) = P̂{ys ≤ η} =
Number of simulations with ys

t ≤ η

NSIM
(36)

From this distribution we derive an approximate distribution density

f̂(η) =
dF̂ (η)
dη

(37)

such that
P{η ≤ ys ≤ η + dη} ≈ f̂(η)dη + o(dη) (38)

Also, with the definitions given in (8) and (9) the following relationships
can be used.

Ĝ(ζ) = F̂ (ys
max − ζ)

ĝ(ζ) = f̂(ys
max − ζ) (39)

3 The Players and Their Risk Levels

Four players are involved in the current concept, i.e. the plant operator, the
plant manufacturer – here identical to the maintenance provider – eventually
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an insurance company and an investor. It is assumed that all of the following
agreements between the players prevail:

• The plant operator and the investor negotiate a loan on the investment to
build the plant. Repayment plus interest amounts to a sum RI per year.

• The plant operator and the maintenance contractor agree that the
contractor will take care of the entire maintenance at a yearly fee FM.

• The maintenance contractor and the insurance company close an insur-
ance contract such that, whenever the defect per year exceeds a deductible
D, the limitD is covered by the maintenance contractor and the exceeding
amount is carried by the insurance. Let the insurance fee be FI.

• Let LC be the labor cost
• Let MC be the pure mechanical maintenance cost
• Let E denote other expenditures and, finally
• Let P be the profit before tax

All cost numbers referenced above and below will be yearly cost.

3.1 The Operator’s Risk

If the operator and the contractor close a service contract, the operator bears
no risk, as he receives a fixed income generated either by his sales or by a
reimbursement from the contractor, should the output remain below ys

max. All
he has to do is to pay the fee FM, which includes the price for having no risk.

3.2 The Contractor’s Risk

The contractor’s risk – defined as the probability that the defect is greater than
the fee paid to him by the operator – is given by

ρC =
∫ ys

max

FM
g(ζ)dζ (40)

The risk is mitigated by the insurance contract. The average defect and the
variance the contractor sees can be written as

μC :=
∫ D

0
g(ζ)ζdζ +D

∫ ys
max

D
g(ζ)dζ

σ2
C :=

∫ D

0
g(ζ)(ζ − μC)2dζ + (D − μC)2

∫ ys
max

D
g(ζ)dζ (41)
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3.3 The Insurer’s Risk

Usually the insurance fee the contractor must pay to the insurance company
is equal to the expected damage to the insurer plus a certain safety factor SF
times the standard deviation. SF typically takes values between 1.0 and 3.0.
The expected cost and the variance the insurer sees is therefore

μI =
∫ ys

max

D
g(ζ)(ζ −D)dζ

σ2
I =

∫ ys
max

D
g(ζ)(ζ − μI)

2dζ (42)

The insurance fee is normally set to

FI = μI + SF ∗ σI (43)

The insurer’s risk is the probability that the damage exceeds the insurance
fee paid to him by the maintenance contractor, i.e.

ρI =
∫ ys

max

FI
g(ζ)dζ (44)

3.4 The Investor’s Risk
3.4.1 No service contract
Figure 2 below shows, how the yearly revenue to the operator is split between
the various types of expenditure, if the operator does not close a maintenance
contract with the contractor.

No Market Risk: Let P 1
CS be the probability that the yearly capital service

amounting to RI cannot be fully served, under the assumptions that

• The yearly revenue Y is fixed and no market risk exists, i.e. every unit
of production can be sold

• Labor cost is fixed
• Payments must be made in the order LC → MC → RI → E

Figure 2 No service contract.
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In that case we have

P 1
CS =

∫ ys
max

ys
max−(LC+MC+RI)

g(ζ)dζ

= G(ys
max) −G(ys

max − (LC +MC +RI))

= 1 −G(ys
max − (LC +MC +RI))

= 1 − F (LC +MC +RI) (45)

Verbally this means that labor and maintenance cost do not leave any
resources to pay the loan back to the investor. Figure 3 illustrates this situation.
The integral is the shaded area in the limits between 0 und ys

max − (LC +
MC + RI). If this integral grows due to the fact that the density function
assumes larger values even for smaller maintenance cost (red area), i.e. if
the maintenance cost become “stochastically smaller”, then the probability to
serve the capital cost is larger than for smaller values of the integral (blue area).

Hence

• Capital service probability grows with falling maintenance cost and
• Investor’s risk falls with falling maintenance cost as well

Figure 3 Probability for capital service with service contract.
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With Market Risk: If, however, h(x) represents the probability density that
x units of product can be sold only, then we have

P 2
CS =

∫ ys
max

LC+MC+RI
h(x)dx

∫ x

x−(LC+MC+RI)
g(ζ)dζ

=
∫ ys

max

LC+MC+RI
h(x)(G(x) −G(x− (LC +MC +RI)))dx

=
∫ ys

max

LC+MC+RI
h(x)(F (ys

max − (x− (LC +MC +RI)))

− F (ys
max − x))dx (46)

3.4.2 With service contract
In contrast, Figure 4 below shows the distribution of the yearly revenue
between the various types of expenditure, if the operator does close a
maintenance contract with the contractor.

Assume, that in this case payments must be made in the order LC →
FM → FI → RI → E

No Market Risk: In this case we have

P 3
CS =

⎧⎪⎨
⎪⎩

1 if Z ≥ ys
max − (LC + FM + FI +RI)

⇐⇒ Y s ≤ (LC + FM + FI +RI)
0 else

With Market Risk:

P 4
CS =

∫ LC+FM+FI+RI

0
h(x)dx (47)

Figure 4 With service contract.
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Figure 5 Default probability without market risk.

3.4.3 Conclusion
Corollary 3 If there is no market risk, then the following holds:

MC ≥ FM + FI ⇒ P 1
CS ≥ P 3

CS

MC ≤ FM + FI ⇒ P 1
CS ≤ P 3

CS (48)

Therefore, if there is no market risk, and if MC ≥ FM + FI (Case 1 in
figure 5 below, then a service contract positively influences the investor’s risk,
otherweise not.

On the other hand, if there is a market risk, and if∫ ys
max

LC+MC+RI
h(x)(F (ys

max − (x− (LC +MC +RI)))

−F (ys
max − x))dx

≥
∫ LC+FM+FI+RI

0
h(x)dx (49)

then P 4
CS ≤ P 2

CS and – again – a service contract has a positive impact.

Proof. Straightforward.
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4 Numerical Example

Figure 6 represents the simplified layout of an industrial cement plant.
Each of the nodes in this layout is given by the following four items.

• An error rate κi

• A downtime τi
• A yield matrix A(i) and a
• A reduction factor ξi

Table 1 below summarizes the reliability related data on κi, τi and ξi as
averages over the different failures. There were two failures that lead to a
complete breakdown of the cement plant.
Figure 7 shows the defect distribution as estimated by a Monte-Carlo
simulation.

Figure 6 Layout of an industrial cement plant.

Table 1 Average reliability data
average error rate κ 1/5551,7h
average downtime τ 66,85h
average reduction factor ξ 0,29
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Figure 7 Defect histogram for 1000 simulation steps.
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